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Abstract

Existing image defogging methods have made significant advancements. However,

these approaches are primarily optimized for land scenes, resulting in suboptimal per-

formance when applied to overwater images due to the distinct characteristics of over-

water scenes. In this paper, we propose an inverted dark channel Prior-Guided Cycle-

consistent Generative Adversarial Network (PG-CycleGAN) for overwater image de-

fogging. Specifically, an inverted dark channel prior map is designed to suppress the

sky and highlight objects over the water. Building on this prior map, we develop a

prior encoder to extract object-related features. Additionally, we propose a Prior-

Guided Residual Block (PGRB) and a Prior-Guided TriUpsample (PGTU) module,

which effectively integrate the extracted prior features for both feature encoding and

upsampling. This integrated approach enhances the network’s ability to accurately re-

store overwater objects, leading to improved defogging performance. Furthermore,

we develop a prior map-guided GAN loss and a prior map-guided cycle-consistency

loss, which guide the network to recover objects with greater fidelity while minimiz-

ing unnecessary restoration of the sky region. Through extensive experimental com-

parisons, our method demonstrates superior performance over existing state-of-the-art
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approaches in terms of qualitative analysis, quantitative metrics, and improvements in

object detection.

Keywords: Overwater image defogging, generative adversarial networks, unpaired

defogging dataset.

1. Introduction

Fog can considerably degrade images taken on lakes, rivers, and seas, leading to

adverse effects on downstream computer vision tasks like object detection and track-

ing. Although many promising image defogging algorithms have been developed, they

rarely focus on the scene of overwater and are limited in defogging overwater image.

Therefore, it is necessary and valuable to conduct research on the defogging of over-

water images.

Based on the Atmospheric Scattering Model (ASM) [1], a foggy image can be

formulated as :

I(xi) = J(xi)t(xi) + A(1 − t(xi)). (1)

Here, xi denotes the pixel position, I(xi) is degraded foggy image, and J(xi) is fog-free

image. A and t(xi) are the air light and the transmission. There are two main types

of defogging approaches: prior-based and learning-based. The prior-based algorithms,

such as Non-Local Dehazing (NLD) [2] and Dark Channel Prior (DCP) [3], recover

clean images by using physical priors through the model (1). However, these priors are

not always reliable. For instance, DCP [3] suggest that a minimum of one channel in

the RGB space tends to approach zero in a fog-free image. As a result, DCP may have

limitations in addressing scene objects that closely resemble the atmospheric light.

Unlike prior-based methods which perform well only for certain scenarios, the

learning-based approaches such as All-in-One Dehazing Network (AODNet) [4] and

Detail-Enhanced Attention Network (DEANet) [5] exhibit better generalization abil-

ity. However, most of them rely on supervised learning and frequently encounter chal-

lenges when handling real-world foggy images due to the synthetic training samples.

To address this issue, researchers have focused on developing semi-supervised and un-

supervised image defogging algorithms, such as Principled Synthetic-to-real Dehazing
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(a) Foggy image (b) Heatmap of (a) (c) DC (d) Heatmap of (c)

(e) Coarse IDC (f) Heatmap of (e) (g) IDCP map (h) Heatmap of (g)

Figure 1: Comparison between the Dark Channel (DC), coarse Inverted Dark Channel (IDC), and the In-

verted Dark Channel Prior (IDCP) map.

(PSD) framework [6], to mitigate the domain shift problem. While these methods have

shown promising performance, little attention has been given to the challenge of over-

water image defogging.

Different from the images captured on land, images captured on water usually con-

tain large sky and water areas. Although objects such as boats on the water often

occupy only a small area, their recovery is more important than the recovery of sky,

as it directly affects subsequent downstream tasks such as object detection and track-

ing. Considering this feature, we propose an Inverted Dark Channel Prior (IDCP) map,

which facilitates the network to focus on the recovery of objects. Fig. 1 compares the

DC and the prior map. In dark channels, the sky and water regions tend to be brighter

than the objects on the water because their pixel values are generally close to the at-

mospheric light. Based on this feature, the objects will be highlighted when the dark

channel is inverted, as shown in Fig. 1 (e). To emphasize this feature, we utilize the

min-max normalization to enhance the contrast, as illustrated in Fig. 1 (g), and we call

it the inverted dark channel prior map.

To integrate the prior knowledge into the defogging network, we propose a prior

encoder designed to extract critical features from overwater images, such as ships.

Subsequently, we design a Prior-Guided Residual Block (PGRB) and a Prior-Guided

TriUpsample Module (PGTU). Specifically, the PGRB compresses prior information

into a 1-D vector, which is used to refine the residual block’s intermediate feature maps
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through channel attention, enabling the block to focus on key features. Meanwhile,

the PGTU integrates prior information with three upsampling methods, motivated by

the following observations: transposed convolution tends to generate checkerboard ar-

tifacts, while bilinear interpolation produces smooth results but limits the network’s

representational power due to its fixed upscaling procedure. PixelShuffle [7] addresses

the overlap issue with sub-pixel convolution, but it is prone to introducing artifacts, as

observed in our experiments. To overcome these limitations, the PGTU module em-

ploys a channel-split strategy to combine three distinct upsampling branches, followed

by the use of channel shuffle and group convolution to effectively merge the upsampled

features. The prior information is then leveraged to guide the upsampling process, en-

hancing ship-related features and ensuring that these features are better preserved and

more clearly represented in the final output.

Furthermore, we propose a prior map-guided cycle-consistency loss and a prior

map-guided GAN loss, both of which are weighted by the inverted dark channel prior

map during the training phase. This weighting mechanism imposes a higher penalty on

overwater objects, such as ships, compared to the water and sky regions. By emphasiz-

ing the importance of overwater objects in the loss functions, we ensure that the model

prioritizes their restoration, while mitigating the influence of less relevant background

regions, such as water and sky, thereby enhancing overall defogging performance.

In brief, this work presents the following contributions:

• An overwater scene-oriented unsupervised image defogging framework with an

inverted dark channel prior map is proposed that emphasizes the objects on the

water, based on the characteristic of the overwater images which often contain

large sky and water areas.

• A prior-guided residual block and a prior-guided TriUpsample module are de-

signed to effectively integrate key object features from the prior map, thereby

improving the network’s representation of overwater objects.

• We further propose a prior map-guided GAN loss and a prior map-guided cycle-

consistency loss to facilitate the network in recovering the objects on the water.
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These two loss functions successfully address and preserve object-related infor-

mation in defogged images.

• Through extensive experimental comparisons, our method demonstrates supe-

rior performance over existing state-of-the-art approaches in terms of qualitative

analysis, quantitative metrics, and object detection improvements.

2. Related Work

In this section, we succinctly overview both prior-based and learning-based meth-

ods relevant to single-image defogging.

2.1. Prior-Based Methods

Prior-based methods leveraging natural image statistics for single-image defogging.

Fattal et al. [8] formulated an improved image degradation model that incorporates a

shading component and surface reflectance coefficients. He et al. [3] suggest that a

minimum of one channel in the RGB space tends to approach zero in a fog-free im-

age. Zhu et al. [9] developed a linear model to obtain depth map through supervised

learning. Fattal et al. [10] explored color-lines which assert that pixels within local

image patches often demonstrate a one-dimensional distribution. Berman et al. [2] as-

sume that a limited number of distinct colors can approximate those present in a clean

image. Liu et al. [11] developed a new approach that reformulates the image defog-

ging problem to increase local visibility and global contrast. Ling et al. [12] proposed

a defogging method based on the saturation line prior, which exploits the linear rela-

tionship between saturation and brightness components of pixels with the same surface

reflectance in fog-free images. Although these methods show effectiveness in image

defogging, they may fail when dealing with certain scenarios. For example, the DCP

[3] often encounters challenges with the sky or white buildings. Additionally, using

the haze-line prior [2] for dense fog can cause color distortion. In comparison, we

optimize the network by building the prior into the loss functions, and our data-driven

model offers good generalization ability.
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2.2. Learning-Based Methods

Data-driven algorithms based on convolutional neural networks (CNNs) for image

defogging have become popular in recent years. For instance, Ren et al. [13] compris-

ing both a coarse and a fine network component dedicated to predicting the transmis-

sion map. Li et al. [4] reconstruct the ASM by combining the transmission map and

air light into a single variable. Then, they developed a CNN to estimate this variable.

Instead of using a single input, the multi-source input fusion strategy [14] is considered

an effective approach. For example, Ren et al. [15] developed a fusion-based network

to recover the clean image, they predict a confidence map by integrating three extracted

channels from the input image. Qin et al. [16] also adopted a fusion strategy, where

they applied channel attention and pixel attention after the high-level feature for giv-

ing more weight to important features. Nevertheless, the utilization of a multi-branch

network architecture escalates network complexity and elongates the training process.

Chen et al. [5] proposed a detail-enhanced attention network that improves dehazing

by enhancing feature representation. It integrates detail-enhanced convolution for effi-

cient feature extraction and content-guided attention to emphasize critical information.

Cui et al. [17] integrate spatial-domain processing, spectral-domain analysis, and a

dual-domain interaction mechanism to effectively capture both local details and global

context. Lyu et al. [18] tackle challenging non-homogeneous scenes by leveraging im-

age priors from multiple color spaces. They design parallel sub-networks and a feature

fusion module to effectively restore color and details in foggy images.

Despite the favorable results of supervised learning-based approaches, their appli-

cation to real-world scenes is limited because of the inherent domain shift caused by

synthetic training sets [19]. Therefore, recent efforts have focused on integrating semi-

supervised and unsupervised approaches to address real-world challenges [20]. These

methods improve model robustness and enhance downstream tasks, such as object de-

tection [21], by leveraging unlabeled data and adapting to diverse scene conditions.

For example, Engin et al. [22] introduced an enhanced CycleGAN [23] which adopt

unpaired real-world images as training set. Li et al. [24] integrated a supervised sub-

network with an unsupervised subnetwork. Shao et al. [25] incorporate defogging

blocks alongside image translation blocks for handling real-world scenes. Zhao et al.
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[26] utilized an unsupervised CNN to refine the defogged image of DCP [3]. Sun et al.

[27] explored an unsupervised multi-branch network with high-frequency enhancement

for image dehazing. It improves feature consistency, stabilizes learning, and enhances

edge and texture restoration in dense fog. Recently, Liang et al. [28] developed a

self-supervised image dehazing framework guided by depth estimation to enhance fog

removal.

The above mentioned approaches offer desirable defogging results on real-world

images, but little literature focuses on the image defogging of overwater scenes. Zheng

et al. [29] proposed an enhanced CycleGAN to tackle the overwater image defogging

problem. Nevertheless, this method simply replaces the training set of land foggy

images as used in other methods with overwater images. Its defogging performance

is limited as this method does not leverage the properties of the overwater scenes. To

this end, our method focuses on the characteristics of overwater foggy images, and

improves the defogging performance and visual quality of the defogged images.

3. Method

In this section, the proposed PG-CycleGAN will be presented in detail. Fig. 2 il-

lustrates the architecture of the PG-CycleGAN, it consists of two cycles: foggy-clean-

foggy and clean-foggy-clean. In the foggy-clean-foggy cycle, the defogging network

G receives a foggy image x and corresponding prior map I f oggy
P as inputs, learning the

defogged and prior information separately. These features are then integrated through

the PGTU module and PGRB, and subsequently decoded to produce a clean image

G(x). This clean image is then passed through the fogging network F to generate a re-

constructed foggy image F(G(x)). Finally, the prior map I f oggy
P is employed to compute

the prior map-guided cycle-consistency loss Lpgcyc, ensuring the accurate restoration of

overwater objects, as well as the prior map-guided GAN loss LpgG, which guarantees

the authenticity of these objects. The clean-foggy-clean cycle is similar to the foggy-

clean-foggy cycle.
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Figure 2: The details of the PG-CycleGAN. It has two generators, a defogging network G and a fogging

network F, as well as two discriminators, DX and DY .

3.1. Inverted Dark Channel Prior

He et al. [3] argued that the DCP loses its validity in scenarios where the objects

possess characteristics that are similar to the air light. This limitation is evident in Fig.

3 (b), where the pixel values of water and sky are not close to 0.

A characteristic of the overwater scenes is that the water and sky usually occupy the

majority of the area. In dark channels, they tend to be brighter than objects on the water

because their pixel values are similar to the air light. Based on this feature, the objects

will be highlighted when the DC of the overwater image is inverted, as depicted in Fig.

3 (c). To emphasize this feature, we try to enhance the contrast of the inverted dark

channel. Fig. 3 shows the difference between the DC, coarse IDC, coarse IDC after

gamma correction, coarse IDC after histogram equalization (HE), and coarse IDC after

min-max normalization (i.e., the inverted dark channel prior map). It can be seen that

though the contrast is enhanced, the gamma correction may lower the pixel value of the

objects, and the histogram equalization may amplify background noise. In contrast, the

min-max normalization maintains the highlight of the object while reducing noise. Fig.

4 is the intensity histogram over 4,531 inverted dark channels of an overwater image
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(a) Input (b) DC (c) coarse IDC (d) Gamma (e) HE (f) IDCP map

Figure 3: Difference on overwater images between the DC, coarse IDC, coarse IDC after gamma correction

(gamma=3), coarse IDC after histogram equalization, and the IDCP map. Here the dark channels are without

performing minimum filtering.

dataset [29] (details described in Sec. 4.1; the images are rescaled to 256×256 for

computational efficiency). It can be seen that the min-max normalization stretches the

pixel values in the middle region while keeping the sky regions darker and the objects

brighter, this statistic provides strong support to our proposed inverted dark channel

prior.

Specifically, given a foggy image I whose pixel value is in the range of [0, 1], its

corresponding dark channel is:

Idc = min
yi∈N(xi)

( min
c∈{r,g,b}

Ic(yi)). (2)

Here, xi and yi denote the pixel coordinates, and Ic is c-th color channel. N(xi) refers

to the local neighborhood centered around xi. To obtain the inverted dark channel
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(a) unnormalized (b) min-max normalized

Figure 4: Intensity histogram of 4,531 inverted dark channels. (a) histogram of unnormalized inverted dark

channels. (b) histogram of min-max normalized inverted dark channels.

prior map, we first remove the minimum filtering min
yi∈N(xi)

(·) from the procedure for dark

channel calculation, and invert the pixel value as follows:

Iidc = 1 − min
c∈{r,g,b}

Ic. (3)

Here, Iidc represents the coarse inverted dark channel. The reasons for removing the

minimum filter are two. One is that it reduces the required computational resources,

as performing the sliding window algorithm is time-consuming. The other is that the

minimum filter may lead to unclear boundaries of the objects in the defogging results

because it exploits all the surrounding pixels.

Then, the min-max normalization operation is applied to Iidc to obtain the inverted

dark channel prior map.

Ip =
Iidc − min(Iidc)

max(Iidc) − min(Iidc)
. (4)

After getting the inverted dark channel prior map, we further define the prior map-

guided cycle-consistency loss:

Lpgcyc = ||(F(G(x)) − x)I f oggy
p ||1 + ||(G(F(y)) − y)Iclean

p ||1, (5)

and the prior map-guided GAN loss:

LpgG = Ey∼pdata(y)[(DY (y) − 1)2] + Ex∼pdata(x)[DY (G(x)I f oggy
p )2], (6)

where x and y are foggy and clean image, I f oggy
p and Iclean

p are the corresponding prior

maps, and || · ||1 is an L1 norm. In Lpgcyc and LpgG, the prior map increases the loss
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Figure 5: The architecture of the defogging network.

associated with objects, ensuring that the network prioritizes the recovery of object

features. Meanwhile, it reduces the loss related to the sky, guiding the network to

focus less on relevant background areas. By modulating these losses, the prior map

effectively guides the network to recover objects with greater fidelity while minimizing

unnecessary restoration of the sky region. This targeted guidance enhances the overall

performance of the network, particularly in preserving key features in complex scenes.

3.2. PG-CycleGAN

1) Overall Structure: The details of the defogging generator G are depicted in Fig.

5. It includes a Defogging Auto-Encoder (DefogAE) and a prior encoder. Specifically,

the prior encoder first employs a 3×3 convolution for initial feature extraction from

the prior map, followed by two downsampling modules, each containing an average

pooling layer and a depthwise separable convolution [30]. Two residual blocks [31]

are then cascaded to enhance the learning capacity of the prior encoder and generate

the prior features.

In contrast to the lightweight prior encoder, the DefogAE demonstrates enhanced

learning capabilities. It consists of a 7 × 7 convolution followed by two 3 × 3 convo-

lutions with a stride of 2, which are used for the initial feature extraction and down-

sampling of the foggy input image. Four PGRB are then employed to integrate prior
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information from the prior encoder, enhancing feature representation and ensuring that

the network focuses more on relevant regions of the image. The PGTU module is

subsequently used for upsampling during feature decoding, incorporating channel at-

tention from the prior encoder to selectively amplify features related to the objects of

interest, while suppressing irrelevant background regions. The integration of prior in-

formation in both feature encoding and upsampling effectively refines the network’s

defogging results, particularly in challenging overwater scenes. Finally, the defogged

image is generated through a 3 × 3 convolution, followed by a 7 × 7 convolution.

2) Prior-Guided TriUpsample Module: The PGTU module is a combination of

three parallel upscaling branches: transposed convolution, bilinear interpolation, and

PixelShuffle [7], with their output filter banks concatenated into a single output. As

shown in Fig. 5, for the foggy image features, we first apply channel split operation

to obtain three feature map groups. Subsequently, three different upsampling methods

are employed to upsample these feature maps:

Xc
T PB = [TC(Fc/3

0 ), PS (Fc/3
1 ),C1×1(BI(Fc/3

2 ))]. (7)

Here, TC, PS , and BI represents transposed convolution, PixelShuffle [7], and bilinear

interpolation, respectively. C1×1(·) is convolution layer with 1×1 kernel size, and [·]

denotes feature concatenation operation. Fc/3
i (i = 0, 1, 2) denotes each channel group

of foggy image features. Additionally, Xc
T PB denotes the combination of the three up-

sampled feature groups.

The channel split operation is conducive to reducing computational cost. Neverthe-

less, such an approach restricts the information exchange among channel groups. To

overcome this constraint, a combination of channel shuffle and grouped convolution is

adopted, thereby augmenting the interaction of diverse upsampled feature groups:

Xc = GC3×3(CS (Xc
T PB)), (8)

where CS (·) denotes a channel shuffle operation, GC3×3(·) denotes a group convolution

layer with the kernel size of 3×3, and Xc denotes the obtained features.

Finally, the upsampled features from the foggy image Xc integrate the channel at-
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tention derived from the prior encoder:

Xre f ined = σ(L(GMP(DS C3×3(Xc
prior)))) ⊗ Xc, (9)

where L(·) denotes linear layer, GMP(·) is global max pooling layer, DS C3×3(·) rep-

resents depthwise separable convolution [30] with a 3×3 kernel size in the depthwise

convolution, σ denotes the sigmoid function, ⊗ denotes elemtent-wise multiplication,

and Xre f ined is the final refined features. Depthwise separable convolution optimizes

feature extraction by decomposing standard convolution into lightweight depthwise

and pointwise operations. Subsequently, the global max pooling layer extracts the

most significant features and compresses them into a 1-dimensional vector. Finally, the

sigmoid function generates attention weights, directing the model to focus on the most

informative regions within each channel.

3) Prior-Guided Residual Block: To facilitate the flow of information across De-

fogAE and prior encoder, we design a prior-guided residual block to assist DefogAE

in capturing object-related information, as illustrated in Fig. 5. Let X f oggy and Xprior

denote the features from the foggy image and the inverted dark channel prior map re-

spectively, we first calculating the channel attention using Xprior:

XCA = σ(L(GMP(DS C3×3(Xprior)))), (10)

where XCA denotes a set of learnable 1-D weights that represent the relative impor-

tance of each channel, allowing the model to focus more on informative channels and

suppress less relevant ones.

Then, we apply the computed channel-level weights to the feature maps at the mid-

dle of the residual block:

Xres = C3×3(C3×3(X f oggy) ⊗ XCA) ⊕ X f oggy, (11)

where C3×3(·) represents the convolution operation with a 3×3 kernel size, ⊕ denotes

element-wise addition and Xres denotes the output features of the PGRB. By incorpo-

rating prior knowledge, the residual block focuses on key aspects of the image, such as

ships or floating objects on the water surface, which are crucial for the overwater image

defogging task. Additionally, integrating prior knowledge enhances the model’s ability

to leverage domain-specific information, improving its robustness and generalization.
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4) Discriminator: Unlike the patch-based discriminator used in [23], we employ a

pixel-level discriminator in our PG-CycleGAN, as illustrated in Fig. 6. This choice is

motivated by the fact that both the prior map and the pixel-level discriminator generate

output arrays that match the size of the input image, allowing for finer-grained feature

matching. In contrast, a patch-based discriminator produces smaller output arrays,

which may not align as effectively with the input image.

Specifically, our discriminator consists of three convolutional layers, each with a

kernel size of 1 × 1 and a stride of 1. The number of filters increases from 64 in the

first layer to 128 in the second layer, and finally reduces to 1 in the last layer. The prior

map is applied to the discriminator’s output scores as a spatial weighting mask, which

emphasizes important regions during loss computation. As a result, misclassifications

in less relevant areas such as the sky incur relatively small penalties, while misclassi-

fications in overwater object regions lead to higher loss values. This encourages the

network to focus on refining object-related details.

Figure 6: The architecture of the discriminator.

3.3. Loss Function

We employ three loss functions for optimizing the PG-CycleGAN, i.e., the prior

map-guided cycle-consistency loss Lpgcyc, the prior map-guided GAN loss LpgG, and

the perceptual loss LVGG.

Prior map-guided cycle-consistency loss and prior map-guided GAN loss are

defined in Equations (5) and (6), they give higher penalties to objects on the water and

lower penalties to the sky.

Perceptual loss is also used to enhance the textural information of the recovery

image, which is based on VGG16 [32] and defined as:

LVGG = ||ϕ(x) − ϕ(F(G(x)))||22 + ||ϕ(y) − ϕ(G(F(y)))||22. (12)

14



Here, ϕ denotes the features extracted from the second and fifth pooling layers of

the VGG16 network.

Total loss function. Integrating all the aforementioned losses, the comprehensive

loss function is formulated as:

L = λ1Lpgcyc + λ2LVGG + λ3LpgG, (13)

where λi (i = 1, 2, 3) represents the weight. In our empirical experiments, it is found

that the network is sensitive to LpgG which can significantly improve the defogging

performance after fine-tuning. Thus, we set λ1 and λ2 to 1 which can stabilize the

training, and set λ3 to 2 which facilitates more thorough defogging by the network.

4. Experiments and Discussions

To evaluate the performance and generalization ability of the PG-CycleGAN, we

conducted qualitative comparisons, non-reference image quality assessment (NR-IQA),

and comparisons of improvements in object detection performance. The evaluations

were conducted against several state-of-the-art methods, including the prior-based method

DCP [3], supervised methods MSBDN [33], 4KDehazing [34], C2PNet [35], and

DEANet [5], as well as semi-supervised and unsupervised methods such as PSD [6],

SLAD [36], UMENet [27], and DGD [28].

4.1. Datasets

In this work, we use real-world foggy images for training instead of the widely used

synthetic images. The dataset, OverwaterHaze, was proposed by Zheng et al. [29]. The

training set consists of 2,090 unpaired foggy images and 2,441 clean images, while the

test set contains 188 foggy images. All images are captured in real-world overwater

scenes with a resolution of 640×480 pixels.

Additionally, the Singapore Maritime Dataset (SMD) [37] is used to evaluate the

maritime object detection performance before and after defogging. The dataset com-

prises 692 foggy images and includes a single category, “boat".
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4.2. Implemented Details

All training samples are rescaled to 512×512 and subjected to random cropping to

256×256 for data augmentation. We employ the ADAM optimizer [38] with a learning

rate of 0.0001. Training follows a cosine annealing schedule, spanning a total of 150

epochs. The process is accelerated using an Nvidia GeForce RTX 3090 GPU, taking

approximately 30 hours.

4.3. Performance Evaluation

A set of experiments is conducted to evaluate the performance of the proposed

PG-CycleGAN, including visual quality comparison, non-reference image quality as-

sessment, and object detection performance evaluation.

1) Qualitative comparison: Fig. 7 presents the defogging results obtained using dif-

ferent approaches on overwater images. It can be observed that the defogging results of

DCP [3] are generally darker, and due to the inaccurate estimation of the transmission

map, artifacts are presented in the sky region. Supervised learning-based methods, such

as C2PNet [35] and DEANet [5], suffer from poor generalization performance due to

the domain shift between synthetic training data and real foggy images, which limits

their effectiveness in removing fog from real-world images. Although unsupervised

and self-supervised defogging methods generally yield better results, the defogged im-

ages produced by PSD [6] exhibit noticeable color shifts, while UMENet [27] also

introduces artifacts in the sky region.

In contrast, the proposed PG-CycleGAN achieves superior defogging results. By

incorporating prior knowledge, the network is better able to focus on restoring over-

water objects, as highlighted in the zoomed-in region in Fig. 7. Compared to other

methods, our approach leaves less residual fog, allowing for clearer restoration of ship

details on the water. Moreover, the defogged images appear more realistic and align

better with human visual perception.

2) Non-reference image quality assessment: Non-reference image quality assess-

ment metrics [39][40] have been effectively utilized to evaluate the quality of real-

world images. In this paper, we adopt FADE [41], HazDesNet [42], and CV-CNN [43]

to quantitatively assess the defogging performance. These metrics have been developed
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(a) Foggy (b) DCP (c) MSBDN (d) 4KDehazing (e) C2PNet (f) DEANet (g) PSD (h) SLAD (i) UMENet (j) DGD (k) Ours

Figure 7: Qualitative evaluation of defogging performance on real-world overwater images

for non-reference evaluation and defogging quality assessment. FADE and HazDesNet,

in particular, are capable of assessing defogging performance by predicting the density

of the fog. CV-CNN assesses the perceptual quality of defogged images through the

complex-valued responses. Lower FADE and HazDesNet values signify less fog in the

defogged images, while higher CV-CNN values indicate better defogging performance.

Table 1 presents a quantitative comparison on the OverwaterHaze dataset, where

bold numbers with superscripts denote the rankings. It can be observed that our method

achieves the best results across all three metrics, with a 0.24 lead over the second-best
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Table 1: Quantitative evaluation of defogging performance on the OverwaterHaze dataset.

Method Publication Type FADE↓ HazDesNet↓ CV-CNN↑
DCP TPAMI’10 Prior 1.08 0.34 0.59

MSBDN CVPR’20

Supervised

2.28 0.53 0.61
4KDehazing CVPR’21 1.54 0.44 0.65

C2PNet CVPR’23 3.01 0.58 0.63
DEANet TIP’24 2.90 0.57 0.70

PSD CVPR’21

Semi/Unsupervised

1.24 0.43 0.65
SLAD IJCAI’22 1.07 0.40 0.70

UMENet PR’24 0.972 0.332 0.732

DGD PR’25 1.92 0.51 0.72
Ours Unsupervised 0.731 0.301 0.771

method on FADE, indicating that our method leaves the least residual fog in the de-

fogged images. Additionally, the results on CV-CNN show that our defogging method

generates images with higher quality, aligning better with human visual perception.

To provide a more intuitive comparison of fog residue in the defogged images, we

present the fog density map comparison (generated by HazDesNet) in Fig. 8. In this

map, colors approaching deep red indicate higher levels of residual fog, while colors

approaching deep blue represent lower levels of fog residue. As observed, the defogged

images produced by our method predominantly exhibit deep blue, signifying minimal

residual fog. In contrast to other methods, PG-CycleGAN places greater emphasis on

defogging overwater objects. Considering all the performance evaluations, it can be

concluded that our method leaves less fog in the images and produces better visual

quality.

3) Evaluation of object detection improvement: Object detection performance can

serve as an effective indicator of image enhancement quality [44]. Therefore, we em-

ploy YOLOv10b [45] to validate the influence of defogging process on object detec-

tion performance, where the confidence and Non-Maximum suppression Intersection

over Union (NMS IoU) threshold are set to 0.25 and 0.45, which are the same as

those in the original code (available on the project website: https://github.com/THU-

MIG/yolov10). In this comparison, a defogging network was employed as a prepro-

cessing step before applying the YOLOv10 detection network. It is worth noting that
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(a) Foggy (b) DCP (c) MSBDN (d) 4KDehazing (e) C2PNet (f) DEANet (g) PSD (h) SLAD (i) UMENet (j) DGD (k) Ours

Figure 8: Comparison of the HazDesNet predicted fog density maps on the defogging results. Deep blue

indicates less fog and deep red indicates more fog residues.

due to the domain gap between synthetic training data and real-world data, supervised

image defogging methods provide limited improvement in the performance of object

detection algorithms. In some cases, they may even degrade detection performance by

introducing noise during the defogging process [46]. Therefore, we focus solely on

comparing prior-based methods and semi-supervised and unsupervised methods.

Precision and recall are fundamental metrics in object detection, used to assess the

accuracy and completeness of a model’s predictions. Precision measures the proportion

of true positive detections among all predicted positives, while recall evaluates the pro-

portion of true positives among all actual objects. Mean Average Precision (mAP) is

a commonly used metric in object detection that provides a comprehensive evaluation

of model performance by incorporating both precision and recall across various confi-

dence thresholds. In our evaluation, we calculate mAP for each object category, with

AP50 and AP75 representing the average precision at Intersection over Union (IoU)

thresholds of 50% and 75%, respectively. Additionally, AP50:95 is computed over a

range of IoU thresholds from 5% to 95%, with increments of 5%.

Table 2 presents the quantitative comparison of object detection performance before

19



Table 2: Quantitative comparison of object detection performance improvement.

Precision↑ Recall↑ AP50↑ AP75↑ AP50:95↑

Foggy 0.57 0.46 53.6 37.4 34.1
DCP 0.722 0.43 56.0 38.42 35.4
PSD 0.62 0.502 57.4 38.42 36.12

SLAD 0.60 0.46 55.6 37.4 34.8
UMENet 0.68 0.48 58.72 37.3 35.6

DGD 0.67 0.45 54.5 35.7 34.2
Ours 0.751 0.521 66.81 43.51 40.41

and after defogging. The results indicate that the proposed algorithm outperforms all

other defogging methods across multiple evaluation metrics. Specifically, it achieves

a 0.03 improvement in Precision over DCP, a 0.02 increase in Recall compared to

UMENet, and a 4.3% improvement in AP50:95 over PSD. These results highlight the

effectiveness of the proposed approach in enhancing detection performance in foggy

conditions.

Moreover, the qualitative comparisons presented in Fig. 9 further substantiate the

effectiveness of our approach. It can be observed that although the image clarity im-

proves after dehazing, artifacts appear around ships in the results generated by DCP and

UMENet. Furthermore, the compared dehazing methods do not adequately account for

the unique characteristics of overwater objects, leading to insufficient recovery of tex-

ture details and contours in critical regions such as ships, consequently resulting in

limited improvements in object detection accuracy. In contrast, our proposed method

significantly enhances the performance of the detection network, as evidenced by the

accurate detection of previously missed objects and higher confidence scores.

5. Analysis and Discussion

5.1. Efficacy of the PG-CycleGAN

To validate the impact of the proposed PGTU module, PGRB, and prior map-

guided losses, we conduct a comparative analysis.
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(a) Foggy (b) DCP (c) PSD (d) SLAD (e) UMENet (f) DGD (g) Ours

Figure 9: Quanlitative comparison of object detection performance improvement.

1) Evaluation of PG-CycleGAN with different settings: To evaluate the contribution

of each component within PG-CycleGAN, we conducted a series of ablation experi-

ments by individually removing or modifying four key modules: the PGTU, PGRB,

prior map-guided cycle-consistent loss, and prior map-guided GAN loss. As summa-

rized in Table 3, five ablation settings are evaluated: Setting i replaces the PGTU with

a transposed convolution module for upsampling; Setting ii substitutes the PGRB with

standard residual blocks; Setting iii replaces the prior map-guided cycle-consistent loss

with the original cycle-consistent loss [47]; Setting iv substitutes the prior map-guided

GAN loss with a conventional PatchGAN loss [23]; and Setting v replaces the prior

map-guided GAN loss with a prior map-guided PatchGAN loss, where the prior map

is downsampled to match the spatial resolution of the discriminator output.

Table 3: Quantative comparison of PG-CycleGAN with different settings.

Setting i ii iii iv v vi

FADE↓ 1.67 0.812 0.87 1.59 1.43 0.731

HazDesNet↓ 0.55 0.332 0.35 0.51 0.45 0.301

CV-CNN↑ 0.69 0.742 0.73 0.65 0.70 0.771

Table 3 shows that removing PGTU causes the largest drop in FADE and HazDesNet

metrics, indicating transposed convolution alone is insufficient for effective fog re-

moval. When using the conventional PatchGAN loss, the CV-CNN metric experiences
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(a) Foggy (b) Setting i (c) Setting ii (d) Setting iii (e) Setting iv (f) Setting v (g) Setting vi

Figure 10: Qualitative comparison of PG-CycleGAN with different settings.

the largest decline. This is attributed to the lack of prior map guidance, which causes

the GAN loss to rely on global features, thereby neglecting important local details and

degrading image quality. Although incorporating the inverted dark channel prior map

into the PatchGAN loss leads to some improvement, the performance still falls short of

that achieved with our proposed prior map-guided GAN loss.

Fig. 10 provides a qualitative comparison of PG-CycleGAN under different con-

figurations. It can be observed that when PGTU is removed, the residual fog in the

images increases significantly. In Fig. 10 (d) and (e), it can be seen that the removal of

the prior map-guided loss leads to noticeable color distortions in the defogged images.

Even when employing a prior map-guided PatchGAN loss, noticeable artifacts persist

in the generated images. This is because the patch-based discriminator, even with prior

guidance, operates at a coarser spatial scale, which limits its ability to leverage the

fine-grained information provided by the prior map. In contrast, the pixel-level dis-

criminator offers more precise spatial alignment, resulting in better detail preservation

and overall performance.

To further evaluate the impact of the minimum filter on network performance dur-

ing prior map computation, we conducted an ablation study by alternately incorporat-

ing and removing the minimum filter in the calculation process. As illustrated in Fig.

11, it can be observed that although the overall defogging effects appear comparable, a

detailed examination of the magnified regions reveals distinct differences. Specifically,

when the minimum filter is applied, residual fog persists around the edges of overwater
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(a) Foggy (b) w/ minimum filter (c) w/o minimum filter

Figure 11: Qualitative comparison of PG-CycleGAN with and without applying the minimum filter to the

inverted dark channel prior map.

objects, and the texture clarity of object regions is slightly reduced compared to the

scenario where the minimum filter is removed. This phenomenon occurs because the

minimum filter aggregates the smallest pixel values within local regions, preventing the

network from accurately focusing on overwater objects and causing attention to shift

toward approximate surrounding areas.

2) Evaluation of PG-CycleGAN with different upsampling methods: To evaluate

the impact of different upsampling strategies within the PGTU module, we conducted

additional ablation experiments, as presented in Table 4. The tested methods include

Transposed Convolution (TC), Bilinear Interpolation (BI), and PixelShuffle (PS), each

applied individually and in pairwise combinations. The results show that due to the

lack of learning capability, the BI method tends to leave more fog in the defogged

images, resulting in inferior performance across all evaluation metrics. In contrast, the

combination of two learning-based methods, TC and PS, yields improved results and

achieves the second-best performance. Overall, the proposed PGTU module delivers

the most effective and visually realistic dehazing results, attaining the highest scores

on FADE, HazDesNet, and CV-CNN metrics.

3) Study on the influence of loss weights: To evaluate the effect of loss weight con-
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Table 4: Quantative comparison of PG-CycleGAN with different upsampling methods.

Setting TC BI PS PGTU FADE↓ HazDesNet↓ CV-CNN↑
i ✓ 1.67 0.55 0.69
ii ✓ 1.74 0.60 0.72
iii ✓ 1.32 0.48 0.68
iv ✓ ✓ 1.13 0.39 0.72
v ✓ ✓ 0.97 0.42 0.73
vi ✓ ✓ 0.832 0.352 0.752

vii ✓ 0.731 0.301 0.771

Table 5: Quantitative performance of FADE on the OverwaterHaze dataset using PG-CycleGAN trained

with different loss weights.

λi
Weight

0.01 0.1 1 2 3 5
λ1 0.90 0.82 0.731 0.782 0.85 0.88
λ2 0.93 0.772 0.731 0.79 0.87 0.92
λ3 0.97 0.85 0.792 0.731 0.81 1.08

figurations on network performance, we conducted experiments on the OverwaterHaze

dataset with varying weight settings, as shown in Table 5 and Fig. 12. It is observed

that setting λ1 and λ2 to 1 yields the lowest FADE score, indicating optimal dehazing

performance, while the best result for λ3 is achieved at a value of 2. Notably, variations

in λ3 lead to the most substantial changes in performance, which can be attributed to the

intrinsic instability of the GAN loss during training. This sensitivity suggests that the

prior map-guided GAN loss plays a particularly critical role in guiding the generator

towards producing more perceptually realistic defogged images.

5.2. Limitations

As shown in Fig. 13, when the local area in the original input image is near to

white, which usually happens on white hulls, the pixel in the corresponding inverted

dark channel prior map will tend to 0. The reason is that if all the pixels of the three

channels in the input possess a large value, the local region will show brightly in the

dark channel, and then appear dark after the dark channel is inverted. This may lead

to suboptimal solutions in network optimization, as it cannot give the objects a high
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Figure 12: Performance plot for PG-CycleGAN trained with different λ values.

penalty. The following solutions could be used to overcome this problem, i.e., refining

the weights of the prior map-guided losses, or adding an extra PatchGAN [23] discrim-

inator to optimize the model.

(a) Input image (b) Dark channel (c) Prior map

Figure 13: The inverted dark channel prior map does not work well in white areas.

6. Conclusion

In this article, we present a PG-CycleGAN for overwater image defogging. We

design an inverted dark channel prior map to highlight objects over the water and sup-

press the sky region, which is further incorporated into two loss functions that impose

a greater penalty on the restoration of overwater objects. Additionally, a prior-guided

residual block and a prior-guided TriUpsample module are developed, which effec-

tively integrate the extracted prior features for both feature encoding and upsampling.
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These components work together to enhance the network’s ability to accurately restore

overwater objects, improving overall defogging performance, particularly in challeng-

ing overwater environments. Through visual quality comparison, non-reference image

quality assessment, and object detection performance evaluation, we demonstrate that

our method outperforms existing state-of-the-art image defogging approaches.

By effectively highlighting overwater objects and distinguishing them from back-

grounds, the proposed inverted dark channel prior map shows strong potential for high-

level visual tasks in overwater scenes. In the future, we aim to integrate the prior map

into detection frameworks to enhance overwater object contour extraction and improve

detection performance. Additionally, the prior map may also be extended to support

related tasks in overwater scenes such as instance segmentation and object tracking,

broadening its applicability in real-world overwater surveillance and navigation sys-

tems.
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